
Server-Assisted Generation of a
Strong Secret from a Password

Warwick Ford, VeriSign, Inc.
(Joint research with Burt Kaliski, RSA
Laboratories)

Requirement

!User who roams between client terminals
needs to

 obtain private key or data
 strongly authenticate to application servers

!No local stored state
!No smartcards
!Private data downloaded from online

credentials server

Traditional Credentials Server Solution

!Surveyed in Perlman & Kaufman, NDSS ‘99
 Examples EKE, SPEKE

!Protocol exposes no information about private data
!Throttling/lockout:

 Limits password guessing
 Makes friendly passwords possible
 Based on failed password authentications

Credentials
Server Credentials

Repository

User presents
password

Throttling/lockout
function

Private Data
Delivery Protocol

Weakness in Traditional Design

! If server compromised, attacker can potentially:
 Attack credentials database, e.g., password verifiers

by exhaustive attack (even if passwords not
determinable directly)

 Disable throttling/lockout and exhaustively attack
with password guesses

!Vulnerable to password attack
!Password exposure means private data

exposure
!Many users may be compromised in one attack

Solution - Multiple Servers

! Objective: Compromise of one server exposes
neither private data nor password

! Not as easy as it looks
 Ordinary secret-sharing not adequate if servers have to

verify passwords

Credentials
Server Credentials

Repository

User presents
password Throttling/lockout

function

Private Data
Delivery Protocol

Credentials
Server Credentials

Repository

Throttling/lockout
function

Private Data
Delivery Protocol

Basic Approach

!Client generates strong master secret K via
interaction with two or more servers

!Client proves successful regeneration of K to all
servers

!K can unlock encrypted private data or facilitate
authentication to other servers

!No server can learn K or password

In More Detail…
! Pre-knowledge

 User knows password P
 Each server Si holds its own secret di for that user
 Each Si also holds its own strong verifier Ki for K

! Client generates strong master secret K
 For each Si, client computes strong secret Ri

◗ via a password hardening transaction depending on P and di
◗ subject to throttling/lockout

 Combines all the Ri to give K
! Client proves successful regeneration of K to servers

 For each server Si generates strong verifier Ki from K
 Demonstrates knowledge of Ki to server Si

! K can unlock encrypted private data or facilitate
authentication to other servers

Secret-Strengthening Protocol

!Properties:
 R1 is a strong secret
 Observer cannot feasibly learn R1 ,d1 or P
 Server cannot feasibly learn R1 [or P ?]
 Same R1 always generated for same P

Server S1User U

Generate random k

w = f(P)

r = wk mod p

U, r U, d1

s1 = rd1 mod p

s1

R1 = s1
1/k mod p = wd1 mod p

Shared strong prime p = 2q + 1
Password P entered

Do It with Two Servers

!Properties:
 K is a strong secret
 Observer cannot feasibly learn K or P
 Neither server can feasibly learn K or P
 Same K always generated for same P
 Both servers need to cooperate for K to be generated

Server S1User U

Server S2U, r

s2
U, d2

s2 = rd2 mod pR2 = s2
1/k mod p = wd2 mod p
K = KDF (R1 , R2)

Generate random k U, r U, d1

s1 = rd1 mod p

s1

w = f(P)

r = wk mod p

Password P entered

R1 = s1
1/k mod p = wd1 mod p

Now Prove It was Successful

!Properties:
 Each server gets proof that client knows K
 Server’s knowledge of Ki does not feasibly assist

determining K (or password)

Server S1User U

Server S2

U, K1
Verify

OWF (K1 ,n1)

Generate n1

n1

U, K2

OWF (K1 ,n1)K1 = OWF(K, 1)

n2

OWF (K2 ,n2)

K2 = OWF(K, 2)

Generate n2

Verify
OWF (K2 ,n2)

Pre-establish
K1 = OWF(K, 1)
K2 = OWF(K, 2)

Some Variants

!Other secret-strengthening protocols
 ECC variant is obvious
 RSA-based also exists

!Other verification methods
 K decrypts a private digital signature key; signed

nonce proves regeneration to server holding
public key

!Use threshold functions in combining
hardened passwords

!Use other functions of master secret to
authenticate to other (application) servers

A Special Case Variant

!Client interacts with password hardening server
S1 to obtain R1

!Client uses T1 derived from R1 to authenticate to
a second server S2

!S2 confidentially delivers to client: secret K
encrypted under T2 derived from R1

!Client decrypts K
!Client verifies to S1 by proving regeneration of K

Special Case Variant - Protocol
Server S1User U

Server S2

Generate random k U, r U, d1

s1 = rd1 mod p

s1

w = f(P)

r = wk mod p

Password P entered

R1 = s1
1/k mod p

U, T1, ET2 (K)

T1 = OWF(R1, 1)
T2 = OWF(R1, 2)
K = DT2 (ET2(K))

Then prove knowledge of K to S1

T1

ET2 (K)
Secure channel

! Properties:
 Attractive when S2 already exists (e.g., SSL or SPEKE server)
 Adding one password hardening server S1 provides the requisite

added strength

The Fundamental Characteristics

!Must recover a master secret using more
than one independent server

 all of which contribute to recovering the secret
 all of which employ throttling/lockout

!At least one secret-contributing server must
use secret-strengthening

!Must prove successful regeneration of a
strong secret to at least two verification
servers

Non-Repudiation Ramifications

!Single server design is weak wrt non-
repudiation

 user can plausibly claim that insider/penetrator at
the server recovered the private key and signed

!The multi-server design significantly improves
non-repudiation

 it is much harder to mount a plausible argument
that independently controlled servers colluded

!But, claims of non-repudiability still rest on
confidence that the client terminal is secure

 there is no silver bullet for this concern

Summary of the Technology

!Traditional credentials server architecture is
vulnerable to server compromise and
exhaustive password guessing against stored
password-derived values

 Server vulnerability raises security concerns and
kills non-repudiation

!Need multiple independent servers
contributing to secret regeneration

 Each must independently throttle/lockout
!Need password hardening as a basis of

establishing strong secret from weak secret

Deployment Status

!Current-shipping VeriSign enterprise
PKI offering includes the option:
 Two-server secret-strengthening

technology to support protection of private
key plus arbitrary user data

 Servers may be operated by Enterprise
and/or VeriSign

!Alternative packagings (e.g., for SSO,
Aggregation) in development

For More Information

!See Ford/Kaliski WETICE 2000 paper at:
http://www.verisign.com/repository/pubs/roaming.pdf

!Contact details:
Warwick Ford, VeriSign, Inc.
E-mail: wford@verisign.com
Tel: (781) 245 6996 x225

